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Abstract 

Compton profiles of LiaN have been measured along 
three crystallographic orientations. The profiles are 
compared with theoretical curves for neutral atoms (Li ° 
and N °) and for an ionic model (Li ÷ and N3-). The 
wave functions for the N 3- ion have been taken from a 
recent Watson-sphere model in which an additional 
spherical potential is introduced in order to simulate the 
stabilizing influence of the crystal environment. The 
shape of the theoretical N 3- profile could be adjusted to 
achieve good agreement between experimental results 
and the ionic model for a Watson radius of r w = 1.2 A. 
This is in some disagreement with the results of a recent 
X-ray diffraction study on LiaN [Schulz & Schwarz 
(1978). Acta Cryst. A34, 999-1005] who favoured a 
value of r w = 1.38 A. Possible reasons for the 
discrepancy, both experimental uncertainties as well as 
more fundamental differences between charge and 
momentum density quantities, are discussed. In ad- 
dition, a significant anisotropy in the experimental 
Compton profiles was observed, particularly between 
measurements made with the scattering vector within 
and perpendicular to the Li2 N layers, which is 
inconsistent with a pure ionic picture of the chemical 
bonding in Li3N. Using the Fourier transform of the 
experimental Compton profile as an aid for the 
interpretation of this anisotropy it is concluded that 
there is a distortion of the N 3- ions due both to the 
anisotropic coordination of the neighbouring Li + ions 
and to the overlap with other nitrogen ions within the 
Li2N layers. Solid-state calculations are needed in order 
to gain a better understanding of the chemical bonding 
in LiaN and experimental Compton profiles should 
provide a powerful tool to test these calculations. 

1. Introduction 

The ionic conductor LiaN has recently been the subject 
of a considerable amount of research activity. This 
interest has stemmed partly from its unusual properties 
as a lithium conductor with a high and extremely 
anisotropic conductivity even at room temperature, 

suggesting possible applications as a solid electrolyte. 
On the other hand, because of its highly symmetric 
structure with only four atoms per elementary cell, 
Li3N is accessible to theoretical treatment and is 
regarded as a useful model of an ionic crystal with a 
highly polarizable N 3- ion. In addition, the basic 
mechanism of the bonding in Li3N itself has been in 
dispute for some time. An extensive summary of the 
many types of investigations made of this material is 
contained in a review article by Rabenau (1978). 

Lithium nitride crystallizes in space group P6/mmm, 
and its structure can be described as alternating layers 
of Li2N divided by layers of pure Li. The N atoms 
occupy the centre of the elementary cell within a 
hexagonal array of Li atoms, as illustrated in Fig. 1. 
Two additional Li atoms, which sit above and below 
each N, form the Li layers. In the Li layers the atoms 
are labelled Li(1) and in the Li2N layers the Li atoms 
are labelled Li(2). At room temperature the inter- 
atomic distances Li(1)-N and Li(2)-N are 1.938 and 
2.107 A, respectively. Neighbouring N atoms are 
separated by 3.649 A within the layers and 3.877 A 
between layers. 

It is tempting to suggest that the bonding could be 
purely ionic due to the formation of the closed-shell 
ions Li ÷ and N 3-. However, this electronic con- 
figuration would lead to colourless crystals, whereas 
the crystals are actually ruby red. Nevertheless, strong 
support for the ionic picture can be found in the results 
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Fig. I. A cut through the Li3N crystal structure showing part of a 
Li2N layer. Large spheres indicate the nitrogen sites. Atoms 
which form the pure lithium layers are situated directly above 
and below each nitrogen. 
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of a recent X-ray diffraction measurement performed 
by Schulz & Schwarz (1978). In addition, polarized 
infrared and Raman spectra were measured on Li3N by 
Chandraseka, Bhattacharya, Migoni & Bilz (1978). A 
rigid-shell model with eight parameters, including the 
anisotropic polarizability of nitrogen ions, yielded an 
excellent fit to the observed phonon frequencies and 
again the authors conclude that Li3N is the first known 
compound in which nitrogen ions are close to an 
anomalous N 3- state. 

The stimulus for the present Compton-scattering 
study was provided by the X-ray diffraction work by 
Schulz & Schwarz (1978) who compared their experi- 
mental results with theoretical structure factors derived 
from a Watson-sphere model for N 3- (Schwarz & 
Schulz, 1978) and a free-ion Li ÷. Very satisfactory 
agreement between theory and experiment was found 
after adjusting the Watson radius to r w = 1.38/k. We 
consider lithium nitride to be a useful model substance 
also for a Compton study since it has the advantage of 
a relatively simple crystal structure. This is an 
important point because the Compton profile is a 
single-centred quantity, which implies that there will be 
a superposition of information from all parts of the unit 
cell. Although this is an advantage when the structure 
has a high symmetry, the effect of this superposition 
undoubtedly complicates the interpretation of data 
from more complex crystals. The presence of the 
diffuse nitrogen ion leads to an electronic behaviour 
which is not yet fully understood. A Watson-sphere 
model, which introduces an additional stabilizing 
spherical potential, can provide only a starting point for 
a description of the solid state. 

A measurement of the electron momentum density 
can first be used to assess the accuracy of the ionic 
model of the bonding in Li3N. To do this we will 
compare the experimental Compton profile with the 
Watson-sphere model using the same wave functions as 
were calculated by Schwarz & Schulz (1978) and used 
by them to evalute their X-ray diffraction data. In 
addition, any anisotropy which is found in the 
momentum distribution (which necessarily lies outside 
the scope of the isotropic Watson model) will provide 
experimental criteria against which to test any 
improved models of the electronic structure of this 
material. In the absence of any solid-state model 
specifically for LiaN, we will also make use of the 
Fourier transform of the Compton profiles to interpret 
our experimental results. Since this transformation 
places the results on a position rather than a momen- 
tum scale, we can draw on our knowledge of the 
structure of the crystal as well as our better intuitive 
grasp of bonding concepts in position space. 

In the following section the technique of Compton 
scattering is briefly summarized. The method of 
obtaining the Compton profile from the wave functions 
supplied by Schwarz (1979) is presented in §3, 

together with some numerical results for the N 3- ion. In 
§ 4 the practical details of the present experiment are 
described and the experimental results are tabulated. 
Following a discussion of these results in § 5, some 
concluding remarks and suggestions are given in the 
final section. 

2. Compton scattering 

In a Compton-scattering experiment, the energy dis- 
tribution of photons which have been inelastically 
scattered through a fixed angle by a body of electrons 
can be related to the initial electron momentum 
distribution in the target. Within the impulse approxi- 
mation, the scattering cross section is proportional to 
the Compton profile, JK(Pz), which is the projection of 
the target electron momentum distribution p(p), onto 
the experimental scattering vector, K. The Compton 
profile can be expressed in terms of the electron 
momentum wave function, Z(P), by 

JK(Pz): ~. f f IZi(P) 12 dPxdPy, (1) 
i PxPy 

where Pz is chosen parallel to K, and the summation i 
runs over each electron in the atom, molecule or unit 
cell. Hence the Compton profile is not a measure of the 
momentum density itself, but rather an integration of 
p(p) over planes perpendicular to the scattering vector. 
A description of the technique of Compton scattering 
and an assessment of the validity of the various 
assumptions leading to the definition of the Compton 
profile is given in the collection of review papers edited 
by Williams (1977). 

The Fourier transform of a Compton profile can 
provide an additional insight into the formation of 
bonds in a crystal. Starting from the Fourier transform 
of the momentum density, we can write 

B(t) = ~ f Izt(p)l 2 exp ( - ip . t )  dp 
i 

: ~..f I//i(r) ~*(r + t)dr, (2) 
i 

where ~i(r) is the position-space electron wave func- 
tion. For a crystal, (2) can be rewritten in terms of the 
Bloch functions ~0v.k(r), where the summation must now 
run over all values of the crystal momentum k for each 
band v. For completely filled energy bands, the 
summation over k can be avoided by replacing the 
Bloch functions, q)v.k(r), by the k-independent Wannier 
functions, av(r). It is then possible to recover the simple 
form of (2). In the case of a directional Compton- 
profile measurement, the momentum density has been 
projected onto Pz, and hence the Fourier transform 
yields only B(z), where z is parallel to pz. Therefore, the 
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experimental Compton profile of an insulator can be 
Fourier transformed to provide the autocorrelation 
function of the crystal Wannier functions along the 
direction defined by the scattering vector. It is hoped 
that this relation between the electronic wave functions 
and Compton-scattering data can facilitate the inter- 
pretation of experimental results even in the absence of 
a theoretical model. In particular, an important 
condition on the zeros in B(t) follows directly from (2). 
Since the Wannier functions for all electrons on each 
transitional lattice site must be mutually orthogonal, it 
is possible to write immediately B(Rj) = 0 for all 
transitional lattice vectors Rj (Schiilke, 1977). In 
addition to the orthogonalization condition which leads 
to zeros at all R j, the autocorrelation function at the 
origin, B(0), simply expresses the normalization of the 
wave functions, i.e. for Li3N one obtains B(0) = 16.0. 

Only the zero-order Bessel function, jo(sr), is required 
since the charge density has been spherically averaged. 
The total form factor for the atom, F(s), is the sum of 
the weighted orbital contributions, where the weighting 
factor is the number of electrons in each shell. Form 
factors for N 3- and 0 2- obtained in this way using the 
wave functions from the Watson-sphere calculation 
have been published by Schwarz & Schulz (1978). An 
inspection of the form-factor curve for N 3- reveals that 
a change of 0.2 A in the Watson radius modifies F(s) 
by about 5 % in the region of the lowest-order reflexions 
in Li3N (0.1 < sin 0/2 < 0.3). 

In order to calculate the Compton profile, one must 
first Fourier transform the position-space wave func- 
tion, ~'ntm.(r), to momentum space, 

;~nlm(P) = f R.tz(r)J,  (Pr) r2 drYlm (P/P)- (4) 

3. Form factors and Compton profiles for N s- 

Schwarz & Schulz (1978) have described a calculation 
of the wave functions for a N 3- ion using a model 
suggested by Watson (1958). This consists of simulat- 
ing the ionic environment in a crystal by embedding the 
ion under consideration in a hollow sphere which 
carries a uniformly distributed charge Q. The value of 
Q was assumed to be + 3, corresponding to the negative 
charge of the ion itself, and the radius r w of the Watson 
sphere provides a variable parameter. This external 
Watson potential is added to the ion potential, and 
self-consistent solutions can then be obtained for 
negative ions which would otherwise be unstable. A 
change in the value of rw modifies mainly the spatial 
extent of the wave functions, whereby the choice of a 
small r w, for example, leads to a more contracted wave 
function. Therefore, this one-parameter, isotropic 
model can be expected to provide only a rough guide to 
the shape of the wave functions in the crystal. 

The wave function ~'n/m(r) for an electron in an 
orbital with quantum numbers n, l and m can be written 
as a product of a radial term, Rnt(r ), and an angular 
term, Ytm(r/r). The charge density, Pnlm(r), is then 
obtained by taking the square of the modulus of ~lnlm(r ) 
and the form factor, fnlm(S), is the Fourier transform of 
the charge density. In order to obtain the form factor 
for an atom or ion, it is necessary to take a spherical 
average. It is immaterial whether one calculates fan(S) 
and averages over all orientations of s, or first averages 
p, tm(r) before calculating fnlm(S) (see, for example, 
Bonham & Fink, 1974). Therefore, by taking the 
spherical average of the charge density, one need only 
consider the radial term, RZnt(r). By expanding the 
exponential in Bessel functions, the Fourier transform 
of the charge density can be written 

O(3 

fnl(S) = f RZnl(r)jo(sr)r 2 dr. (3) 
0 

The momentum density, Pnlm(P), obtained by squaring 
the momentum-space wave function, can then be 
spherically averaged to yield 

Pnl(P) = If Rnl(r)jl (Pr) r2 drl 2. (5) 

The Compton profile for a spherical-symmetric 
momentum density is given by 

oo  

J,a(q) = ½ f P,a(P)P dp. (6) 
q 

The total Compton profile for the atom, J(q), is then 
obtained by summing the orbital contributions, Jnl(q), 
weighted by the orbital occupancy. The Compton 
profiles derived from the numerical wave functions 
supplied by Schwarz (1979) are presented in Table 1 

Table 1. Compton profiles for  N a- calculated f rom the 
Watson-sphere model using the wave functions supplied 

by Schwarz (1979) 

Watson radius r w (A) 

p (a.u.) 1.0 1.2 1.4 

0.00 4.5686 4 . 9 0 2 2  5.2042 
0.10 4.5371 4 . 8 6 5 5  5.1633 
0.20 4-4352 4 . 7 4 2 0  5.0169 
0.30 4.2492 4 - 5 0 8 0  4.7271 
0.40 3.9750 4 . 1 5 9 3  4-2929 
0.50 3.6263 3 . 7 2 2 0  3.7607 
0.60 3.2308 3 . 2 4 0 7  3-1969 
0.70 2.8207 2 . 7 6 0 4  2-6588 
0-80 2.4236 2 . 3 1 4 7  2.1819 
0.90 2.0588 1.9225 1.7807 
1.00 1.7366 1.5906 1.4549 
1.20 1.2289 1-0968 0.9944 
1.40 0.8817 0 . 7 8 1 5  0-7155 
1.60 0.6527 0 . 5 8 3 9  0.5457 
1.80 0.5028 0 . 4 5 8 6  0-4382 
2.00 0.4031 0 . 3 7 6 1  0.3661 
3.00 0.1969 0 . 1 9 5 4  0.1949 
4.00 0.1188 0 . 1 1 8 3  0-1179 
5-00 0.0732 0 . 0 7 3 8  0-0730 
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for various values of the Watson radius, rw. It can be 
seen that a change in rg, of 0 . 2 / k  modifies the peak 
height of the N 3- Compton profile by about 5 %. 

It is useful to compare (3) and (5), which define the 
spherically averaged form factor and momentum 
density respectively. The fundamental difference be- 
tween the two functions concerns the order in which the 
operations of squaring and Fourier transforming are 
performed. However, it is interesting to note from (5) 
that, even when calculating the spherically averaged 
orbital momentum density, one must take into account 
the original symmetry of the orbital (i.e. the appropri- 
ate order spherical Bessel function must be used). The 
form factor, on the other hand, is obtained from the 
spherically averaged charge density and hence only the 
zero-order Bessel function is required. This will lead to 
a different weighting of a 2p orbital, for example, when 
calculating the two functions. In particular, because of 
the shape of the zero- and first-order Bessel functions, 
the 2p terms in the momentum density will be more 
sensitive to the outer part of the radial wave function, 
whereas the spherically averaged form factor will 
depend more strongly upon the region close to the 
origin. This serves to emphasize the complementary 
nature of the form factor and the Compton profile, and 
implies that an approximate wave function may provide 
a satisfactory description of only one of these electron- 
density properties. 

The autocorrelation function B(t) can be derived 
from the Compton profile by making a one-dimensional 
Fourier transform of the total profile, 

B(t) = f J(q) exp (--iqt) dq, (7) 

or, alternatively, each orbital can be transformed 
separately and summed. In Fig. 2 we show B,t(t) for 
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Fig. 2. The autocorrelation function B(t)  calcualted for each orbital 
f rom the N 3- wave functions provided by Schwarz (1979). 

each orbital derived from the N a- Watson-sphere 
model (with a Watson radius of 1.2 A). Beyond about 
1 A there are significant contributions only from the 
n = 2 orbitals, and this method of analysis therefore 
provides a convenient method of separating orbitals. 
Note that the long-range part of B2p(t > 2.4 /k) is 
always negative, and beyond about 3 /k this con- 
tribution will dominate the total B(t) for Na-( ls  2 2s 2 
2p6). The negative part of Bnt(t) arises from correlation 
between positive and negative regions of the position- 
space wave function, and the angular part of the wave 
function therefore plays a crucial role in determining 
the sign of B(t). The functional form of B(t) for atoms 
and molecules, as well as its relation to other 
electron-density quantities, has been discussed by 
Weyrich, Pattison & Williams (1979). 

4. Experimental method and results 

The most versatile system available at present for 
Compton-scattering studies consists of a high-energy 
gamma-ray source and a solid-state detector to analyse 
the energy spectrum of the scattered radiation. An 
apparatus of this type has been constructed at the 
Hahn-Meitner-Institut in Berlin, and its operation and 
performance has been described in detail elsewhere 
(Pattison & Schneider, 1978; Schneider, Pattison & 
Graf, 1979). The stability of the equipment together 
with the high incident photon flux allows data of good 
statistical accuracy to be collected in a matter of days. 
There is, however, the drawback of rather limited 
momentum resolution, which presents some difficulties 
when investigating the momentum distribution in 
metals. Hence, there is a preference towards the study 
of materials in which covalent or ionic bonding is 
present, in order to avoid the sharp breaks in the 
momentum density associated with Fermi surface 
structure. A material such as lithium nitride should 
therefore be very suitable for Compton-scattering 
work. 

In the present experiment, gamma-rays from a 200 
Ci (7.4 x 1012 Bq) 198Au source are scattered by the 
sample through an angle of 165 ° . The incident photon 
energy is 412 keV, and the energy distribution of the 
scattered photons peaks at 160 keV. A series of 
collimators define the incident and scattered beam 
paths, producing a Gaussian angular divergence with a 
FWHM of 1.2 °. The combined effects of detector 
resolution and beam divergence produce a total 
momentum resolution of 0.41 a.u. FWHM. An 
extensive review of the experimental technique has been 
given by Weiss, Reed & Pattison (1977), while the 
data-analysis procedure has already been described in 
detail (Cooper, Pattison & Schneider, 1976). 

Profiles were measured along three crystallographic 
directions, using the same sample in each case. The 
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sample was cylindrical in shape (radius 3.8, length 4.3 
mm) oriented with (001)  lying along the axis of the 
cylinder. The quality of the crystal, as well as its 
orientation, was checked by measuring rocking curves 
for several reflections in different volume elements 
using a gamma-ray diffractometer [for a description of 
the diffractometer see Schneider (1974) and Schneider, 
Pattison & Graf (1979)]. The crystal was found to be 
of very good quality, with a mosaic spread of only 
about 3' over large regions of the sample volume. 

Compton measurements were performed with the 
scattering vector perpendicular to the planes (001), 
(100) and (110), which correspond to the directions 
(001),  (120) and (110).  Following the normal 
convention, the Compton profiles will always be 
labelled according to their (h, k, l) index. The B(z), on 
the other hand, will be identified by their direction 
(u,v,w) in position space, i.e. in the direct lattice. The 
two orientations of the scattering vector in the LiEN 
plane are indicated in Fig. 1. The crystals were aligned 
in the Compton-scattering chamber to within +2 °. 
Each measurement took about 4 d, and 107 counts 
were collected in the (001) profile and 5 x 106 counts in 
the other two profiles. With a channel spacing of 0.03 
a.u. of momentum, the corresponding peak counts were 
105 for (001) and 5 x 104 for (100) and (110) profiles. 

Particular care must be taken concerning the effect 
of resolution on the Compton profile. Rather than 
attempting to deconvolute the data, the processing is 
designed only to remove the effects of asymmetry in the 
experimental resolution function. Therefore, it is still 
necessary to convolute any theoretical profile with a 
Gaussian of 0.41 a.u. F W H M  before comparing theory 
and experiment. It should be noted that the effect of 
experimental resolution on B(z), the Fourier transform 
of the Compton profile, is to multiply the true curve 
with a Gaussian function. This progressively dampens 
the long-range information in B(z), and thus sets a limit 
of about 7 or 8 A on the range of the autocorrelation 
which can be observed. More precisely, the present 
resolution reduces the amplitude of B(z) by a factor of 
two at 3.56 A and by a factor of ten at 6.49 A. 

Multiple scattering can be a serious source of 
systematic error in Compton-profile measurements. 
For this reason, Monte Carlo programs have been 
developed which have been used successfully to 
calculate the eontributlon from those photons which 
have scattered more than once in the sample. Such a 
program has been used in the present case (see 
Felsteiner & Pattison, 1976) where the total amount of 
multiple scattering was in any case low (<3%). An 
additional problem in the present experimental system 
concerns the difficulty of ensuring the purity of the 
incident 412 keV photons. Because it is unavoidable 
that some of these photons scatter in the source itself 
before reaching the sample, there is a small, low-energy 
tail on the spectral distribution of the incoming 

photons. This leads in turn to a slight asymmetry in the 
profile (-~2%) and therefore only the high-energy side 
of the experimental profile is used for quantitative 
comparison with theoretical curves. However, the 
measured anisotropies formed by taking the differences 
between profiles measured along various directions will 
be unaffected by this problem. 

The experimental profiles are given in Table 2 at a 
selection of momentum values. The data were obtained 
on a grid of 0.05 a.u. by making a linear interpolation 
between the original data points from the multichannel 
analyser (which has a non-equidistant channel spacing 
of about 0.03 a.u. on the momentum scale). This 
procedure, together with the removal of the asymmetric 
resolution effects, has reduced some of the statistical 
fluctuations on the data points. A theoretical profile for 
Li3N derived from the Watson-sphere model for N 3- 

a n d  a free-ion Li ÷ is also given in Table 2. 

5. Discussion 

We consider first of all the degree to which the N 3- 
Watson-sphere model represents an improvement over 
the free-atom LiON ° configuration in describing the 
electron distribution in the crystal. Schulz & Schwarz 
(1978) made a similar comparison when analysing their 

Table 2. Experimental Compton profiles for Li3N 
measured along three dimensions 

The theoretical profile for Li+N 3- was calculated with a Watson 
radius for N 3- of 1.2 A, and the curve has been convoluted with 

the experimental resolution function. 

Theory* 
(Watson 

Experimental Compton profiles model) 
Pz (001) (100) (1 I0) r w = 1.2 A 
0.0 6.731 + 0.020 6.613 + 0.030 6.571 + 0.030 6.713 
0.1 6.678 6.561 6.509 6.659 
0.2 6.506 6.401 6.335 6.495 
0.3 6.191 6.139 6.096 6.222 
0.4 5.788 5.770 5.782 5-849 
0.5 5.318 5.338 5-377 5-396 
0.6 4-808 4.878 4.926 4-892 
0.7 4.322 4.404 4.454 4.371 
0.8 3.854 3.948 3.974 3.861 
0.9 3.411 3.513 3.493 3.385 
1.0 3.014 + 0.015 3.077 + 0.020 3.039 + 0.020 2.955 
1.2 2.299 2.323 2.257 2.250 
1.4 1.756 1.727 1.710 1.731 
1.6 1.351 1.333 1.332 1-355 
1.8 1.054 1.053 1.072 1-079 
2.0 0.837 + 0.008 0.845 0.871 0.872 
2.5 0.540 0.555 0.555 0.539 
3.0 0.364 0.359 0.363 0.359 
3.5 0.249 0.241 0.255 0.249 
4.0 0 .180+0.003  0 .172+0.005  0 .181+0-005 0.177 
4.5 0.138 0.125 0.131 0.128 
5.0 0.102 0.092 0.097 0.096 
6.0 0.057 0.057 0.057 0.055 
7.0 0.034 + 0.002 0.034 + 0.002 0.034 + 0.002 0.033 

* Includes resolution effects. 
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X-ray diffraction data. By varying the value of the 
Watson radius, r w ,  between 1.0 and 2.0/k,  they found 
an optimal R value of 0.009 for an r w of 1.39/k (for 
the 233 K data set), whereas the R value for the 
free-atom form factor was 0.020. 

Fig. 3 shows the Compton profiles for the free atom, 
the Watson-sphere model with r w = 1.0, 1.2 and 1.4/k 
and the experimental profile for (001) taken from Table 
2. The free-atom profiles and the ls profile for the Li + 
ion are taken from the Hartree-Fock Clementi profiles 
tabulated by Weiss, Harvey & Phillips (1968). It is 
clear from Fig. 3 that the ionic model represents a 
dramatic improvement over the free-atom model in 
describing the electron structure of LiaN. This is 
primarily because of the extremely diffuse nature of the 
2s electron in Li ° which is drastically modified in the 
solid. It can also be seen that, below about 2.0 a.u., the 
Compton profile is rather sensitive to the Watson- 
sphere parameter, r w .  Since Compton-profile errors at 
the peak are well under 1%, it is possible to specify a 
very precise optimal r w .  However, an inspection of the 
experimental profiles in Table 1 reveals a directional 
variation of more than 2% in the peak height. 
Therefore, it is sufficient to say that, when using the 
wave functions calculated by Schwarz & Schulz 
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Fig. 3. Experimental and theoretical Compton profiles of Li3N. In 
each ease the theoretical curves have been convoluted with the 
experimental resolution function. Theoretical profiles from the 
Watson-sphere model are indicated by the continuous curves; 
their peak values are 6.402, 6.713 and 6.990 a.u. -1 for 
Watson-sphere radii of 1.0, 1.2 and 1.4 /~,, respectively. 
Experimental error bars are smaller than the diameter of the 
circles which indicate the experimental points. 

(1978), a choice of r w close to 1.2/~ provides a very 
satisfactory description of the isotropic Compton 
profile in Li3 N. 

It is interesting to note that the Compton results 
favour a somewhat lower r w value for the Watson 
model than the X-ray diffraction study. Because of the 
good fit between the experimental Compton profile and 
the theoretical curve over the whole momentum range, 
it is difficult to point to a source of systematic error 
which could have produced an additional flattening of 
the profile. The effect of multiple scattering, for 
example, is to transfer momentum from the low- 
momentum region to a broad range above 1-5 a.u., and 
hence the very good agreement in the high-momentum 
region excludes this possibility. On the other hand, the 
diffraction study makes a convincing case for the larger 
value of r w since measurements were performed on 
different samples and at various temperatures with 
consistent results. Because of the coupling between tem- 
perature factors, extinction correction and scaling 
fa6tor in the structure refinement, it is difficult to isolate 
a possible source of error in the diffraction work. 
However, the evidence for a particular r w value 
depends crucially upon only a few, low-order reflec- 
tions below 0.3 /I,-1. These are also amongst the 
strongest reflections and therefore are those most likely 
to be influenced by extinction. If the method of 
extinction correction adopted in the refinement pro- 
cedure was not able to take account of all extinction 
effects, then the resulting R factor would favour too 
large a value of r w .  

It is possible that the small discrepancy between 
Compton and diffraction measurements stems not from 
some systematic error in the experiments, but is rather 
due to the different nature of the physical quantities 
obtained from the two experiments. In order to 
illustrate this argument, we can draw on the con- 
siderable amount of theoretical work which has already 
been done on the electron momentum distribution in 
ionic crystals. In particular, it has been shown that a 
considerable improvement in the description of the 
solid state can be achieved by including the effects of 
wave-function overlap between neighbouring ions by 
obtaining the orthonormalized crystal orbitals using 
L6wdin's symmetrical orthogonalization method (see 
Berggren, Manninen, Paakkari, Aikala & Mansikka, 
1977). Although no calculations of this type have been 
performed for the N 3- ion, results are available for the 
0 2- ion in MgO. This should provide a useful guide to 
the order of magnitude of the overlap effects which can 
be expected in lithium nitride. Considering only the 
peak value of the Compton profile, the free-ion 
configuration Mg°O ° yields a value of 7.940 a.u. -1 
while the wave functions of Yamashita & Asano (1970) 
obtained from a Watson-sphere model lead to a peak 
value of 5.931 a.u. -1. However, a calculation which 
included the wave-function overlap in MgO led to a 
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further reduction in the peak height of the profile to 
5.575 a.u. -1, i.e. a 6% effect (numerical values taken 
from Table 6.10, Berggren et al., 1977). Similar effects 
can be seen in the Compton profiles of other, more 
ideally ionic crystals such as KF, as pointed out by 
Weyrich (1975). One must then consider whether 
wave-function overlap could have a larger influence on 
the Compton profile than on the structure factors. This 
question has been raised before, and the answer seems 
to be strongly affirmative. Reed, Eisenberger, Martin• 
& Berggren (1974) made both measurements and 
calculations of the Compton profile of LiF, and they 
report an experimental anisotropy of about 2% and a 
good fit with a tight-binding model. They argue that in 
those cases where anisotropy results from overlapping 
charges, the anisotropy of the Compton profile goes 
linearly with the overlap whereas the form-factor 
anisotropy goes effectively worse than the square of the 
overlap. Where the overlap is very small, as in the case 
of an ionic system (e.g. in LiF the overlap terms of the 
order of 10-2), one can therefore expect that the 
Compton profile would be more than an order of 
magnitude more sensitive to the overlap than the 
elastic-scattering measurement. This argument was 
placed on a more quantitative basis by Snyder & 
Weber (1978) who calculated directional Compton 
profiles for the diatomic molecule F 2. They divided the 
electron density into atomic (one-centre) and bonding 
(two-centre) terms. The dominant contribution to the 
electronic charge density came from the atomic part, 
containing 17.968 electrons. The overlap charge was 
only 0.032 electrons, or 0.18% of the total. On the 
other hand, the contribution of the overlap profile to the 
total spherical Compton profile at the origin was 
-0 .118,  or 2.2% of the total profile. At almost all 
values of momentum, the relative contribution of the 
overlap part to the valence atomic part of the Compton 
profile was an order of magnitude greater than the ratio 
of the overlap charge to the valence atomic charge. In 
an even more striking result, the directional Compton 
profile parallel to the bond had a valence-overlap 
contribution at the origin o f - 0 . 6 6 9 ,  or 13.4% of the 
total Compton profile. Hence, the overlap, two-centre 
terms give a contribution to the Compton profile along 
the bond which is almost two orders of magnitude 
larger than their relative contribution to the total charge 
density. These theoretical results for F2 are a clear 
confirmation of the arguments put forward earlier by 
Reed, Eisenberger, Martin• & Berggren (1974). 

If the above arguments concerning the sensitivity of 
the Compton profile are correct, then one can expect 
the Compton result to indicate not only a spherical 
contraction of the wave functions in the crystal, but 
also the introduction of aspherical terms due to the 
anisotropic coordination of neighbouring ions. This is 
indeed the case, and the Compton profile anisotropy is 
shown in Fig. 4. The way in which the anisotropic 

behaviour is well reproduced for both positive and 
negative momenta (corresponding to high- and low- 
energy sides of the measured energy spectrum), 
confirms the reliability of the data. It can be seen that 
the greatest anisotropy can be found by comparing 
profiles measured with the scattering vector lying in the 
Li2N layer and perpendicular to the layer. However, 
Fig. 4(b) also shows that there is significant anisotropy 
within the Li2N layer. As an aid to the interpretation of 
these anisotropy curves, we have Fourier transformed 
the data in Fig. 4 to obtain the difference curves AB(z) 
on a position scale shown in Fig. 5. It is immediately 
clear that the largest effects are occurring in the range 
between 2.0 and 3.0 A, although in the case of the 
difference curve (001) - (110) some anisotropy is 
already apparent in the range of about 1.0 A. However, 
statistically significant differences persist well beyond 3 
A, and it must be remembered that the experimental 
resolution reduces the amplitude of the longer range 
information. These results indicate that the anisotropic 
behaviour in Li3N is due not only to the nearest- 
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neighbour N--Li interaction but also to the overlap of 
the more distant, but very diffuse, N ions. 

In order to confirm this interpretation of the 
anisotropy in Li3N, we can examine the long-range 
behaviour of each B(z) individually, without having to 
form any differences. These are shown in Fig. 6 in the 
range up to 8 .A. (Note the change of scale compared 
with Fig. 5.) It is apparent from Fig. 6 that something 
special is happening along the direction (110) which 
connects neighbouring N ions. This type of sharp 
negative overshoot in B(z) has already been observed in 
similar ionic systems such as LiH (Pattison & Weyrich, 
1979) and it can definitely be ascribed to the effects of 
overlap between the diffuse anions. As an additional 
check on the accuracy and reliability of the experi- 
mental data, one can examine the long-range behaviour 
of B(z) to determine whether the zero passages occur at 
the correct positions. As pointed out in § 2, the 
autocorrelation function B(z) in a crystal with filled 
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Fig. 6. The autocorrelation function B(t) along three directions 
obtained by Fourier transforming the experimental directional 
Compton profiles. Error bars indicate +1 standard deviation. 
The long vertical lines crossing the z axis show the position of 
translational lattice sites. 

bands should have a value of zero at all lattice 
translational vectors, Rj. Those values of R] which lie 
along (001), (120) and (110) are indicated in Fig. 6 
by vertical slashes. In all cases the experimental curves 
pass through zero at the appropriate lattice trans- 
lational vectors, within the experimental statistics. 

6. Concluding remarks 

The present Compton-scattering study has confirmed 
the ionic model of lithium nitride, and provides strong 
support for the similar conclusions drawn from X-ray 
diffraction data (Schulz & Schwarz, 1978) and from 
the dynamic properties of this material (Chandraseka, 
Bhattacharya, Migoni & Bilz, 1978). However, the 
sensitivity of the Compton method has allowed us to go 
beyond the simple Watson model of a free N 3- ion. 
This type of model is unable to describe any anisotropy 
found in the experimental profiles, although it does 
appear to provide a reasonable picture of the spherical 
average. In the absence of any solid-state calculation 
specifically for lithium nitride, the Fourier transform of 
the Compton profile has proved to be a useful aid for 
interpreting the directional properties of the experi- 
mental data. However, it is still difficult to distinguish 
between the influence of neighbouring lithium ions on 
the nitrogen, and the longer-range effects of overlap 
between nitrogen ions. It would therefore be useful to 
see the results of even a relatively crude calculation of 
the interactions between the diffuse N 3- ion and various 
orders of neighbours. 

The small but significant discrepancy between the 
optimal Watson radius derived from elastic- and 
inelastic-scattering work represents an interesting chal- 
lenge to the techniques. Although it is possible that 
some systematic error could be responsible for this 
difference, we have argued that this is not necessarily 
the case. When calculating the momentum density and 
form factor, even for a spherically symmetric ion, the 
functional dependence of the two quantities is quite 
different. This is particularly true for the 2p orbitals, 
which are the most populous and also the most 
sensitive to the choice of Watson radius. In addition, 

w e  have emphasized the sensitivity of the Compton 
profile to the effects of wave-function overlap in the 
crystal, using calculations which are available for MgO 
to indicate the quantitiative effects which can be 
anticipated in Li3N. The way in which two-centre 
overlap terms can have a far larger effect on the 
momentum density than on the charge density was also 
illustrated by using the results of a recent calculation 
for the F 2 molecule (Snyder & Weber, 1978). For these 
reasons we suggest that the discrepancy between the 
optimal parameter in the Watson model deduced from 
the two techniques may simply be an indication that the 
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theoretical model is too crude to satisfy both criteria at 
once. 

Since lithium nitride appears to be a useful model 
substance, the experimental investigation of the 
electron density will be developed further using both 
elastic- and inelastic-scattering techniques. A measure- 
ment of a few, low-order reflections can be made on an 
absolute scale using the gamma-ray diffractometer 
operating at the Hahn-Meitner-Institut. This will 
provide an independent check on the conclusions 
drawn from the X-ray diffraction study, which involved 
the measurement of several hundreds of reflections 
followed by a standard refinement procedure. Since a 
change in the Watson-sphere radius, r W, of 0.2 A 
modifies the value of the N 3- form factor by about 5%, 
it should be possible to specify an optimal r W even 
using only a few reflections (provided these can be 
measured on an absolute scale, and corrected for 
extinction effects). A gamma-ray diffractometer offers 
just this possibility (Schneider, 1976), whereas the 
collection of a large data set, suitable for a charge- 
density refinement, would be very time consuming on 
such an instrument. 

More Compton-profile measurements on this Li3N 
crystal are planned for the near future. Attention will be 
focused on the behaviour of the momentum density in 
the Li2N layer. Because of the hexagonal symmetry, it 
is only necessary to collect data over a range of 30 °, 
and therefore four additional measurements would 
provide directional Compton profiles on an angular 
mesh with an interval of only 5 ° . It would then be 
possible to make a reliable reconstructiOn of the 
projection of the momentum density onto, the Li2N 
plane, and this should provide a critical test of any 
theoretical model of the electron density in this 
material. Since various studies of lithium nitride have 
indicated that the lithium ions within these layers are 
responsible for the high lithium mobility (Schulz & 
Thiemann, 1979), a detailed investigation of this 
particular projection of the momentum density may 
throw additional light on the mechanism of ionic 
conduction in this material. 
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